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We present the first solution to a boundary motion planning problem for the
Navier–Stokes equations, linearized around the parabolic equilibrium in a three-
dimensional channel flow. The pressure and skin friction at one wall are chosen
as the reference outputs as they are the most readily measurable ‘wall-restricted’
quantities in experimental fluid dynamics and also because they play a special role
as performance metrics in aerodynamics. The reference velocity input is applied at
the opposite wall. We find the exact (method independent) solution to the motion
planning problem using the PDE (partial differential equation) backstepping theory.
The motion planning solution results in open-loop controls, which produce the
reference output trajectories only under special initial conditions for the flow velocity
field. To achieve convergence to the reference trajectory from other (nearby) initial
conditions, we design a feedback controller. We also present a detailed examination
of the closed-form solutions for gains and the behaviour of the motion planning
solution as the wavenumbers grow or the Reynolds number grows. Numerical results
are shown for the motion planning problem.

1. Introduction
What is motion planning? Motion planning, or trajectory generation, is not a

common concept in fluid dynamics. However, it is a central subject in another area of
mechanics – robotics. By motion planning we are referring to the following problem.
Suppose one is interested in producing a particular spatio-temporal waveform on a
flow boundary for some specific flow variables. Such variables may be skin friction
and pressure, which are linked to aerodynamic quantities of interest such as forces
and moments exerted on an aerial vehicle. These boundary flow variables are referred
to as output variables, and their desired profile is referred to as the reference output.
Now suppose a part of the flow boundary is instrumented with actuators such as
velocity actuators. The actuated quantities, in this case the velocities at the boundary,
are referred to as the flow inputs and their evolution over time is likewise called
the reference input. Motion planning is defined as the problem of determining the
spatio-temporal functions governing the reference inputs that generate the reference
output. In our example this means determining how to actuate the velocities at the
flow boundary to enforce specific skin friction and pressure output profiles. To find
the functions that govern the flow input, one must first find the unique functions
that govern the entire velocity field. This solution is referred to as the state reference
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trajectory as it defines the trajectory (for all space and time) that the system states
(the velocity field) must take in order to satisfy the system equations and the reference
output. The input/output pair for the Navier–Stokes system we consider in this paper
is ‘differentially flat’, i.e. the reference input can be found as a functional of the
reference output. This is so because the partial differential equation (PDE) problem
in question is of Cauchy/Kowalevski type when the roles of t and y are exchanged.
The solution can be expressed as a formal power series in y, with coefficients defined
through recurrence relations based on the reference output. When the series converges,
the solution is unique. Though we pursue a linearized case in this paper, flatness, as a
structural property, also holds in the case of the nonlinear Navier–Stokes system and
constitutes a fundamental reason why the solution we present exists and is unique.
From this solution one finds the reference input.

The solution of a motion planning problem formulated in this way could be used
to produce the exact temporal profiles of forces and moments acting on an aerial
vehicle, using flow actuators (rather than moving flaps). Such capability is of interest
for achieving low radar detectability of aircraft, but it is of just as much interest in
its own right, as a fundamental problem in fluid mechanics and control theory.

As the solution to the motion planning problem is defined for all time, at the
specific time t = 0, the velocity field needs to have a particular spatial profile in order
for the reference input to produce the reference output. This is almost never going
to be the case, as the initial velocity cannot be chosen by the designer, it is given.
For this reason, the open-loop reference inputs designed to solve the motion planning
problem cannot be used alone. The reference trajectory of the system state needs
to be stabilized by adding a feedback component to the (open-loop) reference input.
The design of the feedback component of the controller is referred to as trajectory
tracking.

The two problems, motion planning design and trajectory tracking design, are
independent. The solution to the former is a function (vector-valued) of time and
of the spatial coordinates, whereas the solution to the latter is a function of the
spatial coordinates only. This function is referred to as a gain function and multiplies
the (time-dependent) velocity field in the feedback law. Even for linearized Navier–
Stokes equations (around an equilibrium profile), and even for a simple geometry as
the channel flow, motion planning and trajectory tracking are extremely challenging
problems. Since the objective in the motion planning problem is exact, its solution
is unique – and thus method independent – whereas the solution to the trajectory
tracking problem is not unique and thus is method dependent. This paper presents
motion planning and trajectory tracking designs for skin friction and pressure at the
wall opposite to the actuated wall.

Relation to flow control for stabilization. Most of the research on model-based flow
control so far has been on problems of stabilization type. The channel flow geometry
has occupied a special place in this research. The work on feedback design for
turbulence suppression in channel flow by boundary control was initiated with the
papers by Joshi, Speyer & Kim (1997) and Bewley & Liu (1998), which employed
linear quadratic optimal control techniques, and was followed by the work by Balogh,
Liu & Krstic (2001) and Aamo & Krstic (2002), which employed Lyapunov techniques.
This topic continues to enjoy interest, as reflected through the steady improvement of
the available results Baker & Christofides (2002); Baramov, Tutty & Rogers (2002);
Barbu (2003); Hogberg, Bewley & Henningson (2003); Veres et al. (2003); Baramov,
Tutty & Rogers (2004); Raymond (2006); Ilak & Rowley (2007); Vazquez & Krstic
(2007a , b). In parallel, stabilization problems in other (non-channel) geometries are
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being pursued, such as, for example, in Gunzburger & Lee (1991), Protas & Styczek
(2002), Aamo & Krstic (2004) and Yuan, Krstic & Bewley (2004).

Designs for stabilization are of ‘feedback’ type and do not solve the main problem
that we consider here – the motion planning problem. Motion planning, though new
for Navier–Stokes systems, has already been considered for more accessible types of
systems modelled by PDEs, particularly those of parabolic type studied by Laroche
& Martin (2000), Laroche, Martin & Rouchon (2000), Ollivier & Sedoglavic (2001),
Rouchon (2001) and Meurer & Zeitz (2005). While this paper presents the first solution
for motion planning for a broad family of time-varying trajectories at the boundary
of the channel flow system, Vazquez, Coron & Trelat (2006a) solve the problem of
moving the system from rest to a given Poiseuille profile (equilibrium-to-equilibrium
transfer).

The ‘backstepping’ approach. The approach that we consider here is generally
referred to as ‘backstepping for PDEs’ and it was introduced for one-dimensional
parabolic PDEs in the work by Smyshlyaev & Krstic (2004). In the work by Vazquez
& Krstic (2007a , b) this method was extended to linearized Navier–Stokes equations,
at arbitrary Reynolds numbers, which we use as a starting point for our efforts in
developing motion planning. Backstepping is an approach that employs a particular
form of a Volterra transformation in the spatial variable(s) and in a boundary control
law. The combination of the transformation and the boundary control allows one
to transform the system being controlled, which is typically complex, into a simple
‘target’ system. The basic heat equation PDE is often employed as the target system.
By employing the backstepping approach, we reduce the motion planning problem for
the three-dimensional Navier–Stokes channel problem to a motion planning problem
for two one-dimensional heat equations. In this way, backstepping finds the unique
solution to the motion planning problem. Backstepping is also employed to solve the
trajectory tracking problem.

Organization of the paper. We start by reviewing the three-dimensional channel flow
linearized model and giving an informal argument explaining why the solution to
the motion planning problem is unique in § 2. We then state and prove the solution
to the motion planning problem in § 3. The solution relies on several changes of
variable, including the two-dimensional Fourier transform, the change to normal
velocity and vorticity for variables and, most importantly, the PDE backstepping
transformations. The successful simulation of the system forced by a given reference
trajectory is also shown. A control law which stabilizes the system around the desired
trajectory is introduced and discussed in § 4. We then go on to look more closely at
particular closed-form solutions in § 5 and then the behaviour of the solution as the
wavenumbers grow or Reynolds number grows in § 6. Specifically, the decay in the
norm of the solution is shown for a specific reference trajectory. We conclude in § 7.

2. System model
We consider the three-dimensional channel flow that is infinite in the x- and z-

directions and bounded by walls at y = 0 and y = 1 as seen in figure 1. The governing
equations for the dimensionless velocity field of the incompressible channel flow are
the Navier–Stokes equations

U t =
1

Re
�U − U · ∇U − ∇P, (2.1)

∇ · U = 0, (2.2)
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Figure 1. Three-dimensional channel flow.

where U = (U, W, V ) and U (y, x, z, t) is the streamwise velocity, W (y, x, z, t) is the
spanwise velocity, V (y, x, z, t) is the wall-normal velocity, P (y, x, z, t) is the pressure
and Re is the Reynolds number. The velocities at far wall y = 0 satisfy the standard
no-slip no-penetration boundary condition,

U |y=0 = 0. (2.3)

These equations are linearized around the equilibrium parabolic Poiseuille profile

Ue = 4y(1 − y) (2.4)

We = V e = 0 (2.5)

P e = P0 − 8

Re
x. (2.6)

After defining the fluctuation variables

u = U − Ue, p = P − P e, (2.7)

the linearized system is

ut =
1

Re
�u − Ueux − Ue

yV − px (2.8)

Wt =
1

Re
�W − UeWx − pz (2.9)

Vt =
1

Re
�V − UeVx − py (2.10)

ux + Vy + Wz = 0 (2.11)

u|y=0 = 0 W |y=0 = 0 V |y=0 = 0. (2.12)

The Dirichlet conditions at the far wall y = 0 satisfy the standard no-slip and no-
penetration boundary conditions. However, the Neumann boundary variables at the
same wall are used as the reference outputs. They are denoted by Y and given by the
desired skin friction and pressure trajectories, ur

y(0, x, z, t), Wr
y (0, x, z, t), pr (0, x, z, t).

We must solve for the reference inputs, denoted by U, and given by ur (1, x, z, t),
Wr (1, x, z, t), V r (1, x, z, t). These inputs are actuated at the near wall y = 1.

We assume all three velocities to be actuated. We stress that there is no consensus
in the literature as to which velocities are physically reasonable or mathematically
necessary to actuate. The possibility of both wall-normal and tangential (lateral) air
injection using synthetic jets is discussed in Glezer & Allen (2002). We emphasize that
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the three velocity components at the boundary that our control laws command are
neither mutually independent nor arbitrary but satisfy the Navier–Stokes PDEs.

It is important to understand what type of a mathematical problem one is facing
when trying to find U for a given Y. If we exchange the role of t and y, then the
equations, expressed in terms of u, W, p, are

uyy = −uxx − uzz + Re
(
ut + Ueux + Ue

yV + px

)
(2.13)

Wyy = −Wxx − Wzz + Re(Wt + UeWx + pz) (2.14)

pyy = −pxx − pzz + 2Ue
yVx. (2.15)

Note that the left-hand side is a partial derivative of order two in y and on the
right the partial derivatives with respect to t, x, z are of order two or less. Now the
‘initial conditions’ at y = 0 are given by Y, the no-slip condition (u = W = 0) and
py |y = 0 = − 1/Re(∂/∂x)uy |y = 0 − 1/Re(∂/∂z)Wy |y =0, (where uy |y =0, Wy |y = 0 are again
given by Y). Set up in this way, this is a problem of Cauchy/Kowalevski type. As
such we can expand the PDE using a formal power series in y and define recurrence
relations for the coefficients (as functions of the remaining independent variables). As
the first and second coefficients of this series are given through the ‘initial conditions’,
the recurrence relations define the series without any ambiguity. The normal velocity
V is also defined without ambiguity through Vy = −ux −Wz and V |y =0 = 0. Therefore,
if the series converges, we have a solution to u, W, V, p given Y and that solution is
unique.

As standard for channel flow, we make use of the two-dimensional Fourier
Transform in the x- and z-directions to reduce the spatial dimension of the system
from three to one. It results in a continuum of one-dimensional systems, each
parameterized by kx and kz, the wavenumbers in the x- and z-directions, respectively.
As the three-dimensional PDE system is linear, each one-dimensional system is
uncoupled from the others, though the subsystems within the one-dimensional system
remain coupled. As the transformation between Fourier/wave space and physical
space is standard, we continue the rest of the paper (unless explicitly stated) in wave
space. For convenience we drop the dependence on kx and kz in the functions. The
equations that result from the transformation are (in wave space)

ut =
1

Re
�ku − 2π i kx Ueu − Ue

y V − 2 π i kx p (2.16)

Wt =
1

Re
�kW − 2 π i kx UeW − 2π i kz p (2.17)

Vt =
1

Re
�kV − 2 π i kx UeV − py (2.18)

2π i kxu + 2 π i kzW + Vy = 0 (2.19)

u|y=0 = 0 W |y=0 = 0 V |y=0 = 0, (2.20)

where �k = ∂2/∂y2 − α2 and α2 = 4π2(k2
x + k2

z ). The velocities u(y, t), W (y, t), V (y, t)
and pressure p(y, t), as well as the reference output trajectories ur

y |y =0, W
r
y |y = 0, p

r |y = 0

are parameterized by the wavenumbers kx and kz.
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3. Motion planning
The desired reference output Y = {ur

y |y = 0, Wr
y |y = 0, pr |y =0} for the skin friction and

pressure is chosen within the following class of functions of (t, kx, kz):

ur
y |y=0 =

∑
m

Ameϕmt , Wr
y |y=0 =

∑
m

Bmeϕmt (3.1)

pr |y=0 =
∑

m

Cmeϕmt , (3.2)

where Am, Bm, Cm and ϕm can all depend on the wavenumbers kx and kz. Indeed, ϕm

can be complex – thus any sinusoid can be represented by (3.1) and (3.2).
In general these sums must be chosen such that∑

m

Xm

√
ε

ϕm

sinh

(√
ϕm

ε

)
eϕmt < ∞ ∀kx, kz,

where Xm ∈ {Am, Bm, Cm}. If ϕm = imϕ0, then Xm must be the Fourier coefficients of
a function that is smooth and periodic in t . In addition the terms Xm(kx, kz) need
to decay ‘fast enough’ in kx, kz, for example, to be square integrable in kx, kz (where
they correspond to the Fourier Transform of square integrable functions in x, z). We
will discuss this in detail in § 6 where we analyse the growth of the motion planning
solution.

Before stating the main result of this paper, we introduce Volterra operators and
other notation. The Volterra operator is a ‘spatially causal’ or lower triangular change
of variable which starts from the lower wall y = 0 and is marched forward continuously
in space towards the near wall y =1. This type of approach has been effective in
control of finite-dimensional nonlinear systems such as robotics and flight dynamics
and it is known under the names of feedback linearization (Isidori 1995), dynamic
inversion and integrator backstepping (Krstic, Kanellakopoulos & Kokotovic 1995).
The extension to infinite-dimensional systems was developed recently and results in
explicit formulae for the gain functions Smyshlyaev & Krstic (2004). This method is
based on a functional transformation f �→ g ,

f (y) = g (y) −
∫ y

0

K(y, η)g (η)dη,

where the second term is a Volterra integral operator with a kernel K(y, η). This
transformation is invertible and its inverse involves another Volterra operator,

g (y) = f (y) +

∫ y

0

L(y, η)f (η)dη,

where the kernels L(y, η) and K(y, η) are related through a (non-Volterra type)
integral equation

L(y, η) = K(y, η) +

∫ y

η

K(y, σ )L(σ, η)dσ.

We introduce a compact Volterra operator notation as

V(K, f )(y) =

∫ y

0

K(y, η)f (η)dη,

where the operator output is a function of y, the upper limit of integration is the
first argument of the first function and the integration is over the second argument



Motion planning and trajectory tracking for three-dimensional Poiseuille flow 313

of the first function and the first argument of the second function. (If the second
function has more than one argument, such as time or wavenumbers, all but the first
are ignored as far as the integration is concerned.) We also define

Wy
η(K, L) =

∫ y

η

K(y, σ )L(σ, η)dσ,

which is similar to V(·, ·) except that (i) the lower limit of integration is the second
argument of the second function and (ii) the operator output is a function of both y

and η.
Next we present the main result of the paper – the full reference trajectory (for

input and state), valid for all individual wavenumbers, satisfying the reference output
profiles for the skin friction and pressure at the far wall (3.1) and (3.2), and consisting
of a linear combination of two Volterra integrals of explicit functions with spatial
gain kernels. The linear combination results from the use of the normal velocity
and vorticity while the Volterra operators arise from the use of PDE backstepping
theory. The solution is method independent – we simply employ backstepping to find
it. Therefore, the pattern of dependence on Reynolds and wave numbers (which is
examined in § 6) is not a result of the method but is inherent to the motion planning
problem itself.

Theorem 1. The PDE system (2.16)–(2.20) with desired output (3.1) and (3.2) is
satisfied by the following functions defined for (y, t) ∈ [0, 1] × [0, ∞):

ur =
−1

2πi

kxY
r + kzω

r

k2
x + k2

z

(3.3)

Wr =
−1

2πi

kzY
r − kxω

r

k2
x + k2

z

(3.4)

V r (y, t) =

∫ y

0

Y r (η, t)dη = V(1, Y r ), (3.5)

where Y r (y, t) and ωr (y, t) are

Y r = Ψ r − F + V(L, Ψ r − F ) (3.6)

ωr = Ωr − G + V(Φ, Ωr − G) + V(Θ, Ψ r − F ), (3.7)

the functions Ψ r (y, t), Ωr (y, t), F (y, t), G(y, t) are defined by

Ψ r = −2πi
∑

m

(kxAm + kzBm)eϕmt

√
ε

ϕm

sinh

(√
ϕm

ε
y

)
(3.8)

Ωr = −2πi
∑

m

(kzAm − kxBm)eϕmt

√
ε

ϕm

sinh

(√
ϕm

ε
y

)
(3.9)

F = −
∑

m

CmeϕmtV(σm, V(K, qp) − qP ) (3.10)

G = −
∑

m

CmeϕmtV(σm, V(Γ, qp)), (3.11)

where σm(y, η) = sinh(
√

ϕm/ε(y − η))/
√

ϕmε and the kernels L(y, η), Θ(y, η), Φ(y, η),
K(y, η), Γ (y, η) are defined by the following well-posed PDEs (Smyshlyaev & Krstic
2004) in the region

{
(y, η): 0 � η � y � 1

}
εLyy = εLηη − φ(y)L − f εKyy = εKηη + φ(η)K − f
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− Wy
η(f, L) + Wy

η(K, f ) (3.12)

εL|η=y = − 1
2
V(1, φ) − g(0) εK |η=y = − 1

2
V(1, φ) − g(0) (3.13)

εL|η=0 = −g(y) εK |η=0 = V(K, g) − g(y) (3.14)

εΘyy = εΘηη − φ(y)Θ − h εΓyy = εΓηη + φ(η)Γ − h

− Wy
η(h, L) + Wy

η(Γ, f ) + Wy
η(�, h) (3.15)

εΘ |η=y = 0 εΓ |η=y = 0 (3.16)

εΘ |η=0 = 0 εΓ |η=0 = V(Γ, g) (3.17)

εΦyy = εΦηη − φ(y)Φ ε�yy = ε�ηη + φ(η)� (3.18)

εΦ|η=y = − 1
2
V(1, φ) ε�|η=y = − 1

2
V(1, φ) (3.19)

εΦ|η=0 = 0 ε�|η=0 = 0 (3.20)

where

ε =
1

Re
(3.21)

φ(y) = 8πikxy(y − 1) − εα2 (3.22)

f (y, η) = 8πikx(2y − 1) − 32πi
kx

α
sinh(α(y − η))

−16πikx(2η − 1) cosh(α(y − η)) (3.23)

g(y) = −εα sinh(αy) (3.24)

qP (y) = −α2 cosh(αy) (3.25)

h(y, η) = 8πkzi(1 − 2y) . (3.26)

The reference input is given by ur |y=1, W
r |y =1 and

V r |y=1 = e−(α2/Re)t

∫ t

0

e(α2/Re)τ

(
Y r

y |y=1

Re
− cosh(α)

Y r
y |y=0

Re

+ 4πikx

cosh(αy)

sinh(α)

∫ 1

0

V r (η, τ )Ue
y (η) cosh(α(1 − η))dη

− α sinh(α)
∑

m

Cmeϕmτ

)
dτ + V(1, Y r |t=0)|y=1. (3.27)

We prove Theorem 1 by construction in § 3.1 to help the reader gain insight into
the design aspects and the structure of the solution. The structure of the problem
is pictorially represented in figure 2. We start with the linearized Navier–Stokes
equations (2.16)–(2.20) and forcing trajectories (3.1) and (3.2) and perform several
transformations (shown in figure 3) to divide the problem into several tractable
problems. After solving these simpler motion planning problems, we transform the
solutions back to the velocity variables. The steps are summarized as follows:

(i) Solve for the pressure and find a (open loop) normal velocity controller to
reduce the open-loop problem from three velocity variables and one pressure variable
down to three velocity variables.

(ii) Employ a transformation that reduces the model with three velocity variables
to a model with only two variables in the normal direction – the normal vorticity ωr

and the derivative of the normal velocity in the normal direction Y r = V r
y .
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from Poisson equation for p

Solve PDEs (Y, w)
with disturbance

cancellation

Solve ODE in t

� �

V r
|y = 1

ur|y = 1

Wr| y = 1

pr|y = 1

ur
y| y = 1

W r
y|y = 1

Figure 2. The structure of the input–output relationship U �→ Y and a description of the
types of problems that are solved in constructing the input U for a given reference output Y.
Finding V r |y =1 is ‘easy’ – it involves only a solution to an ODE in the time variable, given
the pressure reference pr |y =0. Finding ur |y = 1 and Wr |y =1 is more complicated as it involves
solving the Cauchy/Kowalevski problem for two coupled PDEs with a given output reference
ur

y |y = 0,W
r
y |y = 0, combined with solving an exact disturbance cancellation problem, where the

pressure reference pr |y = 0 acts as a known disturbance.

{u, W, V, p} {Ψ – F, Ω – G }{Y, w}
L, Φ, Θ

K, ∏, Γ

Figure 3. The string of (invertible) transformations involved in solving the
full-state motion planning problem.

(iii) Use the PDE backstepping transformation (employing Volterra integral
operators and kernels K, �, Γ ) to transform the more complex model (Y r, ωr ) to
simple heat equations for (Ψ r, Ωr ) and (F, G).

(iv) Solve the heat equations which define Ψ r, Ωr . These are forced at the boundary
by ur

y |y = 0, W
r
y |y =0.

(v) Solve the heat equations which define F, G. These are forced internally by
pr |y =0.

(vi) Use the inverse transformation (also employing Volterra integral operators and
kernels L, Φ, Θ) to transform back from Ψ r, Ωr and F, G to Y r, ωr .

(vii) A linear combination of Y r and ωr gives us ur, Wr, V r .

3.1. Proof of Theorem 1 and construction of open loop control

Solve for the full pressure reference trajectory. Rather than working with four different
variables (three velocity variables and one pressure variable – which is further
complicated by a non-dynamic constraint), we instead use only two variables in
the normal direction. Before stating the system equations for these two variables, we
identify the input velocity trajectory in the normal direction V r |y =1 that ensures that
the output pressure trajectory pr |y = 0 is satisfied (exactly, i.e. for all time). The explicit
solution to the elliptic PDE for p,

�kp = −4πikxU
e
yV

py |y=0 = −2πi
kxuy |y=0 + kzWy |y=0

Re

py |y=1 =
−2πi(kxuy |y=1 + kzWy |y=1) − α2V |y=1

Re
− Vt |y=1
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is

p =
1

α

{
− 4πikxV(Ue

y (η) sinh(α(y − η)), V )

+ 4πikx

cosh(αy)

sinh(α)

∫ 1

0

V (η, t)Ue
y (η) cosh(α(1 − η))dη

− cosh(α(1 − y))

sinh(α)

(−2πi)(kxuy |y=0 + kzWy |y=0)

Re

+
cosh(αy)

sinh(α)

(
(−2πi)(kxuy |y=1 + kzWy |y=1) − α2V |y=1

Re
− Vt |y=1

)}
. (3.28)

By choosing the open-loop control V r |y=1 = N, where N verifies

Nt = − α2

Re
N +

(−2πi)(kxuy |y=1 + kzWy |y=1)

Re
− cosh(α)

(−2πi)(kxuy |y=0 + kzWy |y=0)

Re

+ 4πikx

cosh(αy)

sinh(α)

∫ 1

0

V r (η, t)Ue
y (η) cosh(α(1 − η))dη

− α sinh(α)
∑

m

Cmeϕmt , (3.29)

i.e. when V r |y=1 is defined as (3.27), we arrive at the motion planning solution for pr :

pr =
1

α

{
− 4πikxV(Ue

y (η) sinh(α(y − η)), V r )

+ sinh(αy)
(−2πi)(kxuy |y=0 + kzWy |y=0)

Re
+ α cosh(αy)

∑
m

Cmeϕmt

}
, (3.30)

where pr |y=0 is exactly (3.2). The control (3.29) conveniently absorbs the non-strict
feedback (spatially non-causal) term – the integral from zero to one – into the normal
velocity reference input, allowing for the rest of the motion planning problem (for ur

and Wr ) to be approached using the backstepping method.
Reduce system to two variables in the normal direction. As is standard, we make use

of the continuity equation and work with a variant of the normal velocity and the
normal vorticity

Y r = V r
y = −2πi(kxu

r + kzW
r ) (3.31)

ωr = −2πi(kzu
r − kxW

r ). (3.32)

We see from a first glance at the evolution equations (where we have used the fact
that V has a homogeneous Dirichlet boundary condition at y = 0 to inversely relate
V to Y )

Y r
t =

1

Re
�kY

r − 2πikxU
eY r + 2πikxU

e
y V(1, Y r ) − α2pr (3.33)

ωr
t =

1

Re
�kω

r − 2πikxU
eωr + 2πikzU

e
y V(1, Y r ) (3.34)

that we must solve for pr if we wish to retain two second-order subsystems instead of
the fourth-order and second-order subsystem seen in the Orr–Sommerfeld equations.

At this point we know pr and V r |y=1 and may now take these into account to
construct the rest of the motion planning solution. Substituting (3.30) into (3.33) the
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full ‘cascade’ system for the two variables Y r, ωr is

Y r
t = εY r

yy + φ(y)Y r + g(y)Y r
y |y=0 + V(f, Y r ) + qP (y)

∑
m

Cmeϕmt (3.35)

ωr
t = εωr

yy + φ(y)ωr + V(h, Y r ) (3.36)

Y r |y=0 = 0 Y r
y |y=0 = −2πi

∑
m

(kxAm + kzBm)eϕmt (3.37)

ωr |y=0 = 0 ωr
y |y=0 = −2πi

∑
m

(kzAm − kxBm)eϕmt , (3.38)

where we use the homogeneous Neumann boundary condition for V in the boundary
conditions for Y . By ‘cascade’ we mean that Y r feeds into the wr equation but not
the other way around, which will be exploited in our design. Note also that the Y r

equation is forced by the pressure output trajectory.
Construct the forward PDE backstepping transformation. This step employs the PDE

backstepping method. This method for finding stabilizing boundary controllers for
parabolic PDE systems is introduced and explained in Smyshlyaev & Krstic (2004).
In this paper, though we do use the method to find stabilizing controllers, its main
use is in breaking up the entire motion planning problem into solvable steps and
finding the full spatio-temporal reference trajectory. It is important to note that this
solution is method independent – we simply take advantage of backstepping to find
it constructively.

The backstepping method exploits the invertibility of transformations that employ
a shift by a Volterra operator, which has a triangular structure. We start with the
block-triangular transformation (Y r, ωr ) �→ (Ψ r − F, Ωr − G) given by

Ψ r − F = Y r + V(K, Y r ) (3.39)

Ωr − G = ωr + V(Γ, Y r ) + V(�, ωr ), (3.40)

where Ψ r, Ωr and F, G are defined later. The forcing term qP (y)
∑

m Cmeϕmt in (3.35),
which comes from the pressure reference, complicates the motion planning problem
for the streamwise and spanwise wall shear stress output trajectories, ur

y |y=0, W
r
y |y=0.

This pressure term acts as a known disturbance that needs to be cancelled by the
controls ur |y=1, W

r |y=1, which have a simultaneous task of also generating the output
trajectory ur

y |y=0, W
r
y |y=0. The (main) motion planning part of the state trajectory is

(Ψr, Ω
r ), whereas the disturbance cancellation part is (F, G). We first decide how we

want Ψ r and Ωr to behave and from there we then define the gain kernels K, �, Γ

and find the equations that govern F, G. We set the boundary conditions of Ψ r, Ωr

to match the boundary conditions of Y r, ωr and set the boundary conditions of F, G

to zero. We also want the simplest parabolic PDE the method will allow to govern
the behaviour of Ψ r and Ωr – arriving at uncoupled forced heat equations

Ψ r
t = εΨ r

yy Ωr
t = εΩr

yy (3.41)

Ψ r |y=0 = 0 Ωr |y=0 = 0 (3.42)

Ψ r
y |y=0 = −2πi

∑
m

(kxAm + kzBm)eϕmt Ωr
y |y=0 = −2πi

∑
m

(kzAm − kxBm)eϕmt .

(3.43)

The gain kernels K, π, Γ which allow the transformation (3.39) and (3.40) to decouple
the cascade system (3.35)–(3.38) and transform it to the uncoupled system (3.41)–
(3.43) are defined by the hyperbolic PDEs (3.12)–(3.20). These PDEs can be solved
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numerically or symbolically using an equivalent integral equation formulation that
can be solved via a successive approximation series (Smyshlyaev & Krstic 2004). The
procedure to find the PDEs which govern the gain kernels can be found in Krstic,
Cochran & Vazquez (2008). This procedure extends easily allowing us to find the
governing equations for F and G

Ft = εFyy + (V(K, qP ) − qP (y))
∑

m

Cmeϕmt (3.44)

Gt = εGyy + V(Γ, qP )
∑

m

Cmeϕmt (3.45)

Fy(0) = 0, Gy(0) = 0

F (0) = 0, G(0) = 0 .
(3.46)

Solve for Ψ r, Ωr . The motion planning problem for Ψ r, Ωr defined by (3.41)–
(3.43) can be solved by representing Ψ r or Ωr as a power series expansion in y –
i.e. Ψ r =

∑∞
l al(t)y

l/l!. After solving for al(t), the resulting series can be explicitly
summed as the sinh function seen in the solution (3.8) and (3.9).

Solve for F, G. The equations governing F, G can be solved by taking the Laplace
transform in y and then solving the resulting first-order ordinary differential equation
in t . The inverse Laplace transform results in the solution (3.10) and (3.11).

Find the inverse of the PDE backstepping transformation. After breaking the full
problem down to simpler motion planning problems and a number of PDE equations
governing gain kernels, we must inversely relate Ψ r, Ωr and F, G to Y r, ωr . This
inverse relationship (3.6) and (3.7) also uses Volterra integrals, this time with gain
kernels L, Θ, Φ . The gain kernels are defined by (3.12)–(3.20) and can be related to
the forward transform gain kernels through the following integral equations:

L = K + Wy
η(K, L)

Φ = � + Wy
η(�, Φ)

Θ = Γ + Wy
η(Γ, L) + Wy

η(�, Θ).

Retrieve ur, Wr, V r . The two velocity variables ur, Wr are recovered through the
linear combinations of the two variables Y r, ωr (3.3) and (3.4), while V r is recovered
as the integral of Y r (3.5).

3.2. Simulation results on motion planning

We illustrate the motion planning solution that results when choosing a specific spatio-
temporal waveform for the skin friction and pressure at the far wall (a reference output
trajectory) and applying the techniques presented in this paper to obtain the exact
initial conditions plus the exact input velocity (reference input) trajectories at the
near wall. The figures show motion planning results for the following spatio-temporal
output reference trajectory

ur
y |y=0 =

{
e−(16π2/25)(k2

x/100+k2
z /9) sin((4πkx + 1/2)t), kz � 0

0, kz < 0
(3.47)

Wr
y |y=0 =

{
e−(32π2/25)(k2

x/100+k2
z /9)i sin((4πkx + 1/2)t), kz � 0

0, kz < 0
(3.48)

pr |y=0 =

{
4π

(
i kx

10
+ kz

3

)
e−(32π2/25)(k2

x/100+k2
z /9) sin((4πkx + 1/2)t), kz � 0

0, kz < 0
(3.49)
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written in wavespace. We emphasize that the figures show the exact solution and
include no feedback component – in other words, we did not simulate the linearized
Navier–Stokes equations, instead we computed the solution (3.3)–(3.5).

To show the general applicability of the method towards possibly complex problems,
the output reference trajectory (3.47)–(3.49) is chosen as more complex than any
particular physical application that we can think of would call for.

Figures 4 and 5 show snapshots in time of the spatio-temporal profile (3.47)–(3.49)
in physical space. The arrows in figure 4 indicate the direction and magnitude of the
output skin friction at the far wall y = 0. The colours in figure 5 indicate the output
pressure at y = 0 with blue being low pressure and red being high pressure. Time
proceeds left to right and top to bottom in all figures.

Figures 6 and 7 result from applying the solution at Re = 20 to the above profile.
The figures show snapshots in time of the exact input velocities that must be actuated
at the near wall y = 1 to obtain the trajectories seen in figures 4 and 5. The arrows in
figure 6 indicate the direction and magnitude of the (ur, Wr ) reference input velocity
vector. The colours in figure 7 represent the value of the normal velocity reference
input with blue denoting negative velocities and red denoting positive velocities.

4. Stabilization
As one cannot choose the initial conditions of the flow, we must look to the

addition of a feedback component to the reference input. Towards this end, we present
a feedback law that accomplishes the stabilization of the linearized Navier–Stokes
system about the trajectory (3.3)–(3.5). Similarly to the motion planning solution,
the feedback law is derived using the PDE backstepping method. However, unlike
the motion planning solution which is unique, the choice of a stabilizing feedback is
not. While previous optimal control designs required actuation of only the normal or
only the tangential components of velocity, but at both walls, our approach employs
actuation of all three velocity components but only at the far wall y =1. One of
the advantages of the backstepping approach over optimal control approaches, when
applied to the channel flow, is that it is not necessary to solve high-dimensional
Riccati equations, and the backstepping gains (the kernels) are explicit (symbolically
computable) functions of the Reynolds number and the wavenumbers. Though the
feedback law that we present here employs full state feedback, an observer developed
in Vazquez, Schuster & Krstic (2006b) allows us to implement the controller by
measuring only the pressure and the skin friction at the same wall as the output
reference y = 0.

Theorem 2. The feedback boundary controller, actuating the three velocities at the
near wall y = 1,

u|y=1 =
∑

m

Ameϕmt

√
ε

ϕm

sinh

(√
ϕm

ε

)
+ V(

k2
xK + k2

z� + kzkxΓ

k2
x + k2

z

, u)
∣∣∣
y=1

+V(
kxkzK − kzkx� + k2

zΓ

k2
x + k2

z

, W )
∣∣∣
y=1

− 1

2�i

kxF |y=1 + kzG|y=1

k2
x + k2

z

(4.1)

W |y=1 =
∑

m

Bmeϕmt

√
ε

ϕm

sinh

(√
ϕm

ε

)
+ V(

kzkxK − kxkz� − k2
xΓ

k2
x + k2

z

, u)
∣∣∣
y=1

+V(
k2

zK + k2
x� − kxkzΓ

k2
x + k2

z

, W )
∣∣∣
y=1

− 1

2πi

kzF |y=1 − kxG|y=1

k2
x + k2

z

(4.2)
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X22

Figure 4. Snapshots of the desired skin friction spatio-temporal profile (reference output
trajectory). Time proceeds left to right and top to bottom. Arrows indicate direction and
magnitude.
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Z
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X23

Figure 5. Snapshots of the desired pressure spatio-temporal profile (reference output
trajectory). Time proceeds left to right and top to bottom. Blue indicates low pressure while
red indicates high pressure.
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X24

Figure 6. Snapshots in time of the input reference trajectory for streamwise and spanwise
velocities. Time proceeds left to right and top to bottom. Arrows indicate direction and
magnitude.
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X25

Figure 7. Snapshots in time of the input reference trajectory for normal velocity. Time
proceeds left to right and top to bottom. Blue indicates negative velocity while red indicates
positive velocity.
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V (t, 1)t = e−(α2/Re)t

∫ t

0

e(α2/Re)τ

(
2πi

Re
(cosh(α)(kxuy |y=0 + kzWy |y=0) − (kxuy |y=1

+ kzWy |y=1)) + 4πikx

cosh(αy)

sinh(α)

∫ 1

0

V (η, τ )Ue
y (η) cosh

(
α(1 − η)

)
dη

− α sinh(α)
∑

m

Cmeϕmτ

)
dτ (4.3)

exponentially stabilizes the system (2.16)–(2.20) about the solution (3.3)–(3.5) in the L2

sense ∫ 1

0

(|u − ur |2 + |W − Wr |2 + |V − V r |2)dy

� Ce−εt

∫ 1

0

(|u|t=0 − ur |t=0|2 + |W |t=0 − Wr |t=0|2 + |V |t=0 − V r |t=0|2)dy, (4.4)

where ε = 1/Re and

C = (1 + α2)(1 + ||L||∞)2(1 + ||K ||∞)2

× ((1 + ||Φ||∞)2 + ||Θ ||∞(1 + ||Φ||∞ + ||Θ ||∞))

× ((1 + ||�||∞)2 + ||Γ ||∞(1 + ||�||∞ + ||Γ ||∞)) (4.5)

|| · ||∞ = sup
0�η�y�1

{·}. (4.6)

Proof. To prove stability about the solution (3.3)–(3.5), we first note that the pressure
is still defined by (3.28) and becomes (3.30) when the normal velocity component of
the feedback is defined as in (4.3). We then write the system in terms of Y and ω. The
error system (Ỹ = Y − Y r, ω̃ = ω − ωr ) then has the following dynamics:

Ỹt = εỸyy + φ(y)Ỹ + g(y)Ỹy(0) + V(f, Ỹ ) (4.7)

ω̃t = εω̃yy + φ(y)ω̃ + V(h, Ỹ ) (4.8)

Ỹ |y=1 = V(K, Ỹ )|y=1 (4.9)

ω̃|y=1 = V(�, ω̃)|y=1 + V(Γ, Ỹ )|y=1 (4.10)

Ỹ |y=0 = 0 ω̃|y=0 = 0 (4.11)

where we made use of (3.39) and (3.40) to determine the value of the Y r |y = 1, ω
r |y = 1.

Using the standard backstepping transformation

Ψ̃ = Ỹ − V(K, Ỹ ) (4.12)

Ω̃ = ω̃ − V(�, ω̃) − V(Γ, Ỹ ), (4.13)

where K(y, η), �(y, η), Γ (y, η) are still defined by (3.12)–(3.20), we arrive at the
dynamics for the backstepping error variables

Ψ̃t = εΨ̃yy Ω̃t = εΩ̃yy

Ψ̃ |y=0 = 0 Ω̃ |y=0 = 0
Ψ̃ |y=1 = 0 Ω̃ |y=1 = 0

(4.14)

which are uncoupled heat equations. The use of the backstepping transformation (4.12)
and (4.13) shifts the coupling effects of the cascade system (4.7)–(4.11) to the boundary.
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These coupling effects (related to the non-normality of the Orr–Sommerfeld–Squire
operator) cause small time algebraic growth in the Squire equation. To deal with this,
the boundary control law cancels them. The variables Ψ̃ and Ω̃ can be bounded as
follows: ∫ 1

0

|Ψ̃ |2dy � e−εt

∫ 1

0

|Ψ̃ |t=0|2dy (4.15)∫ 1

0

|Ω̃ |2dy � e−εt

∫ 1

0

|Ω̃ |t=0|2dy. (4.16)

Thus, we can bound the L2 norm of the error system as in (4.4) by using the forward
and inverse transformations (3.6) and (3.7) and (3.39) and (3.40).

Note that this controller and stability theorem are defined for any wavenumber
though the control is not actually meant to be applied for high wavenumbers as the
inverse Fourier Transform would not converge in that case. When using this control
law to stabilize the reference solution, the functions Am(kx, kz), Bm(kx, kz), Cm(kx, kz)
should have compact (though arbitrarily large) support set S in (kx, kz), whereas
the control law (4.1)–(4.3) should be applied for a sufficiently large disc D (around
the origin) in wavenumber space (kx, kz), where S ⊂ D. The controller (4.1)–(4.3)
can be written either as a function of time plus a function of state (as it is now),
or, as a function of time plus a function of the tracking error (the tilde variables).
In the latter form, one can truncate the feedback gains as low as permitted to
still have stability. This truncation would not change the perfect tracking ability of
the control law but it would lead to a slower decay of the tracking error to zero.
The uncontrolled wavenumber set Re2\D takes advantage of the stability of these
(truncated) wavenumber pairs around a zero velocity profile. Details about this can
be found in Krstic et al. (2008).

5. Closed-form solutions to the kernel PDEs
The kernel PDEs (3.12)–(3.20) can be solved numerically, by using a modified

Ablowitz–Kruskal–Ladik scheme (Ablowitz, Kruskal & Ladik 1979), or symbolically,
by using the method of successive approximations (Smyshlyaev & Krstic 2004).
In certain cases we can find the solutions in closed form. Setting the streamwise
wavenumber kx to zero is one such case. In terms of control of channel flow turbulence,
this is an important scenario as it is the case where the transient growth is the largest
(Bamieh & Dahleh 2001; Bewley 2001; Schmid & Henningson 2001; Jovanovic &
Bamieh 2005), thus it is of interest that we can find closed-form solutions for this
case.

Theorem 3. The PDE systems

εLyy = εLηη + εκ2L εKyy = εKηη − εκ2K (5.1)

εL|η=0 = −g(y) εK |η=0 = V(K, g) − g(y) (5.2)

εL|η=y = ε
κ2y

2
εK |η=y = ε

κ2y

2
(5.3)

εΘyy = εΘηη + εκ2Θ − h εΓyy = εΓηη − εκ2Γ − h

− Wy
η(h, L) + Wy

η(�, h) (5.4)

εΘ |η=0 = 0 εΓ |η=0 = V(Γ, g) (5.5)

εΘ |η=y = 0 εΓ |η=y = 0 (5.6)
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εΦyy = εΦηη + εκ2Φ ε�yy = ε�ηη − εκ2� (5.7)

εΦ|η=0 = 0 ε�|η=0 = 0 (5.8)

εΦ|η=y = ε
κ2y

2
ε�|η=y = ε

κ2y

2
(5.9)

are satisfied by the functions

L = κ sinh(κ(y − η)) + Φ + Wy
η(κ sinh(κ(y − η)), Φ) (5.10)

Θ = Θ1 + Wy
η(Θ1, Φ) (5.11)

Φ = κ2η
I1(

√
κ2(y2 − η2))√

κ2(y2 − η2)
(5.12)

Θ1 =
2i

εκ
η
(
κ(2y − η − 1) sinh(κ(y − η)) − cosh(κ(y − η)) + 1

)
(5.13)

K = κ2(y − η) + � − Wy
η(�, κ2(y − η)) (5.14)

Γ = Γ1 − Wy
η(�, Γ1) (5.15)

� = κ2η
J1(

√
κ2(y2 − η2))√

κ2(y2 − η2)
(5.16)

Γ1 =
κi

ε
η(y − η)(3y − η − 2)

− 2i

3εκ2
(6κ + 12κ(y − η) + 3κ3(y − η)2 − 2κ3(y − η)3

−6κ cosh(κ(y − η)) − 24 sinh(κ(y − η)) + 12κ(y − η) cosh(κ(y − η))), (5.17)

where κ = 2�kz, I1 is a modified Bessel function of the first kind and J1 is a Bessel
function of the first kind.

Proof. The solutions (and their derivations) to (5.7)–(5.9) can be found in
Smyshlyaev & Krstic (2004). Once Φ is found, � is simply −Φ with κ2 replaced
with −κ2. Also using methods from Smyshlyaev & Krstic (2004) we write L, K , Θ ,
Γ as

L = L1 + Φ + Wy
η(L1, Φ) (5.18)

K = K1 + � − Wy
η(�, K1) (5.19)

Θ = Θ1 + Wy
η(Θ1, Φ) (5.20)

Γ = Γ1 − Wy
η(�, Γ1), (5.21)

where L1, K1, Θ1, Γ1 are defined by

εL1yy = εL1ηη εK1yy = εK1ηη (5.22)

εL1|η=0 = −g(y) εK1|η=0 = V(K1, g) − g(y) (5.23)

εL1|η=y = −g(0) εK1|η=y = 0 (5.24)

εΘ1yy = εΘ1ηη − h − Wy
η(h, L1) εΓ1yy = εΓ1ηη − h (5.25)

εΘ1|η=0 = 0 εΓ1|η=0 = V(Γ1, g) (5.26)

εΘ1|η=y = 0 εΓ1|η=y = 0. (5.27)

By inspection we find L1 = − g(y − η)/ε. By using the transformation K1(y, η) =
FK (y − η) we change the K1 system to an integral system in FK :
εFK (y) =

∫ y

0
FK (η)g(y − η)dη − g(y). Then, by noting that g(y)′′ = k2g(y), we



Motion planning and trajectory tracking for three-dimensional Poiseuille flow 327

0 5 10 15 20
100

102

104

106

108

1010

kz kx

Growth in kz Growth in kx
m

ax
 u

(t
, 
1
)

kx = 0, Re = 0.1

kx = 0, Re = 1.0

kx = 2

kx = 4

kx = 2

kx = 4

0 5 10 15 20

1020

1015

1010

105

100

kz = 0, Re = 0.1

kz = 0, Re = 1.0

kz = 2

kz = 4

kz = 2

kz = 4

Figure 8. maxt{|ur |y =1|} growing in kz and kx forced by ur
y |y =0 = sin(t).

can rearrange the FK system into a solvable second-order ordinary differential
equation: F ′′

K = 0, FK (0) = 0, F ′
K (0) = κ2 and find K1 = κ2(y − η). To find Θ1, use

the change of variables (ξ = y + η, ζ = y − η, T (ξ, ζ ) = Θ1(y, η)) to obtain a PDE
in T : Tξζ = − (1/4ε)h((ξ + ζ )/2) cosh(κζ ), T (ξ, ξ ) = 0, T (ξ, 0) = 0. T is then found
by integrating the forcing function first with respect to ζ from zero to ζ and
then with respect to ξ from ζ to ξ . Similarly, to find Γ1, again use the change
of variables (ξ = y + η, ζ = y − η, Σ(ξ, ζ ) =Γ1(y, η)) to obtain a PDE in Σ:

Σξζ = − (1/4ε)h((ξ + ζ )/2), Σ(ξ, 0) = 0, εΣ(ξ, ξ ) =
∫ ξ

0
Σ(ξ + τ, ξ − τ )g(τ )dτ. Again,

integrate Σξζ first with respect to ζ from zero to ζ and then with respect to ξ from ζ

to ξ to obtain a forced integral equation for Σ . As the forcing is a function of both ξ

and ζ whereas the integral part of solely a function of ζ , designate the integral part as
�(ζ ) and find the integral equation for � that is only in ζ . This integral equation can
then be turned into a solvable second-order ordinary differential equation by again
noting that g(y)′′ = κ2g(y).

6. Inherent difficulty increases with Reynolds and wavenumbers
One natural question to ask of the reference solution (3.3)–(3.5) is how it grows

or decays as either the wavenumbers grow or as the Reynolds number grows. We
consider both cases in this section. The growth that is demonstrated in this section
is inherent to the problem as the solution itself is unique and method independent.
Thus large controls are primarily the result of an overly ambitious choice of reference
trajectory.

The following figures examine the portion of the motion planning solution due solely
to a streamwise output friction trajectory of ur

y |y = 0 = sin(t). They show the maximum
absolute value of the input reference trajectory, maxt{|ur |y =1|}, maxt{|Wr |y =1|},
given different system parameters when the output trajectory is as stated
(ur

y |y =0 = sin(t), Wr
y |y = 0 = 0, pr |y =0 = 0). Figures 8 and 9 show the growth of the

input reference as the wavenumbers grow, while figure 10 demonstrates the growth
as the Reynolds number grows.

The exponential growth of the motion planning solution in both wavenumber and
Reynolds number is also seen when the solution is forced by only the spanwise friction
output trajectory Wr

y |y=0 = sin(t) or by the output pressure trajectory pr |y=0 = sin(t) as
shown in figures 11 and 12, while figure 13 demonstrates the growth as the Reynolds
number grows.
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Figure 9. maxt{|Wr |y = 1|} growing in kz and kx forced by ur
y |y =0 = sin(t).
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Figure 10. (a) maxt{|ur |y = 1|} and (b) maxt{|Wr |y = 1|} growing in Re forced by
ur

y |y = 0 = sin(t).

These figures show the need to carefully chose the amplitudes (and frequencies
which similarly affect the growth as the Reynolds number) of the output trajectories
so that the use of the inverse Fourier transform to transform the system back to
physical space converges. It is important when choosing the amplitude functions to
take advantage of their dependence on wavenumber as opposed to blindly choosing
a constant value for all wavenumber pairs. Examples include choosing only a finite
number of frequencies and choosing Gaussian functions in kx and kz as the amplitude
functions.

It makes sense that more energy is required to generate high frequencies than low
frequencies. To counter the growth due to high wavenumbers, one must decrease the
amplitude at high wavenumbers. Figures 14 and 15 show how the growth changes
once the amplitude of the output reference trajectory depends on wavenumber –
they show the growth of the input reference due to an output reference of
pr |y =0 = F{e−π4x2−π4z2} sin(t) = (1/π3)e−(k2

x/π2−k2
z /π2) sin(t). The dependence seen in these

figures is much more acceptable.
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Figure 11. maxt{|ur |y = 1|} growing in kz and kx forced by pr |y = 0 = sin(t).
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Figure 13. (a) maxt{|ur |y = 1|} and (b) maxt{|Wr |y = 1|} growing in Re forced by
pr |y =0 = sin(t).

7. Conclusion
The PDE backstepping theory enables the synthesis of the exact solution to the

motion planning problem for skin friction and pressure for the three-dimensional
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Figure 15. maxt{|Wr |y = 1|} growing in kz and kx forced by pr |y = 0 = (1/π3)e−(k2
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z /π2) sin(t).

linearized Navier–Stokes equations modelling channel flow. This is the first such
result in the field of flow control. The PDE backstepping theory also allows us to
stabilize the system about the reference solution, and thus achieve trajectory tracking
for skin friction and pressure outputs. We hope to expand this study to state prediction
and aircraft maneuverability with fluidic actuators.

The growth of the solution due to the Reynolds number serves to actually encourage
us to turn to the fully nonlinear Navier–Stokes equations for motion planning
purposes. As the only way to move energy in the linearized equations is through
the diffusive properties tied to the Reynolds number, as the Reynolds number goes
up, the energy needed to affect the far wall increases – as seen in the figures in this
paper. However, the convective terms in the nonlinear equations could be useful for
motion planning.

Motion planning for boundary layer flows is of great physical relevance. However,
due to the collocated input–output structure, this system is not differentially flat and
is likely to have unstable inverse dynamics at high Reynolds numbers. Future research
should focus on identifying collocated flow problems that allow motion planning.
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